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Substitution of (A3) into the sum of the reduced which is the same as f(e) as calculated in (17).
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Quasiparticles and the Born Series™
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Perturbation theory always works in nonrelativistic scattering theory, unless composite particles are
present. By “composite particle” is meant a bound state or resonance, or one that would exist for an
interaction of opposite sign ; in fact, this provides a precise definition of resonances. It follows that if fictitious
elementary particles (quasiparticles) are first introduced to take the place of all composite particles, then
perturbation theory can always be used. There are several ways of accomplishing this, one of which cor-
responds to the N/D method. In order to prove these results it is necessary to make a detailed study of the
eigenvalues of the scattering kernel, and as a by-product we obtain new proofs of the applicability of the
Fredholm theorems to scattering theory, of the convergence of the Born series at high energy, of the
Bargmann-Schwinger theorem on the number of bound states, of the Pais-Jost theorem on the identity of
the Jost function with the Fredholm determinant, and of Levinson’s theorem. We also give explicit formulas
for binding energies and phase shifts in potential theory, using first-order perturbation theory after insertion
of a single quasiparticle; these formulas work well for the Jowest bound state and the S-wave scattering length
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of the Yukawa potential, and give precisely 13.6 eV for the hydrogen atom binding energy.

I. INTRODUCTION

HIS is the second of a series of papers, in which we
hope to develop a practicable method of calculat-
ing strong interaction processes.

In our first paper! it was proven that any given non-
relativistic Hamiltonian H can be rewritten to introduce
fictitious elementary particles (quasiparticles) which did
not appear in H. The new Hamiltonian H yields pre-
cisely the same physical predictions as H, provided that
when we put the quasiparticles into the unperturbed
part, we also modify the interaction term according to
certain rules. These matters are reviewed in Sec. II.

We also remarked in A that such quasiparticles can be
introduced very freely, without any reference to physi-
cally real particles, and also without any point. But
their introduction can be the crucial step in practical
calculations, for such calculations can always be done
by perturbation methods unless composite particles are
present. If we introduce a quasiparticle corresponding
to each composite particle, then we get a new (but
physically equivalent) theory in which there are no
composites, but only real and fictitious elementary

* Research supported in part by the U. S. Air Force Office of
Scientific Research.

1 Alfred P. Sloan Foundation Fellow.

1S. Weinberg, Phys. Rev. 130, 776 (1963); this article will be
referred to as A.

particles, so that perturbation theory works. What
actually happens is that the modification of the Hamil-
tonian forced upon us by the introduction of a quasi-
particle weakens the original interaction enough to
remove the divergence of the Born series associated with
the corresponding composite particle.? Seen in this way,
the strength of a given coupling should never make us
despair of applying perturbation theory; a very strong
interaction merely gives rise to many composite par-
ticles, and, hence, forces us to introduce a large number
of quasiparticles before we start using the Born series.
I believe that this approach will make perturbation
theory universally applicable, even to the full rela-
tivistic series of Feynman diagrams.? The purpose of
this paper is to demonstrate that this conjecture is,
indeed, correct within the limited proving ground of
nonrelativistic two-body scattering theory.
Itisshownin Sec. IIT that the Born series will diverge
if and only if there are composite particles present, and

2 A more general approach to the problem of obtaining a con-
vergent perturbation series has been suggested by M. Rotenberg
(to be published). Our approach seems to correspond to his if the
operator he calls “J—1” is chosen to be separable; otherwise the
quasiparticle interpretation is inapplicable.

3 Some preliminary steps in this direction are reported by
S. Weinberg, in Proceedings of the 1962 Annual Iniernational
Conference on High-Energy Physics at CERN, edited by J. Prentki
(CERN, Geneva, 1962), p. 683.
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in Secs. IV and V (or XI) that the divergence can be
cured by introducing quasiparticles corresponding to
each composite particle. But we have to be careful with
what we mean by this. What matters for convergence at
a given energy W is, of course, not just a bound state
that might happen to be precisely at W, but rather it is
the whole denumerably infinite set of energy eigenstates
|¥,) which can be skifted to W by dividing the inter-
action by a real or complex number #,(W). The physical
Born series diverges at energy W if and only if some
7,(W) lies outside the unit circle, and all such diver-
gences can be cured by introducing quasiparticles in
correspondence with each #,(W) that ever leaves the
unit circle as W increases from — o« to -4 . At the
particular energy where some #,(I¥) leaves the unit
circle we have either an actual bound state or resonance,
or one that would be present for an interaction of oppo-
site sign; a bound state or a resonance, thus, always
signifies the beginning of a divergence of the Born
series. In fact, we may take that this is a new definition
of a resonance, which agrees with all previous definitions
for narrow resonances, and which continues to be pre-
cise and significant even for broad ones.

The interpretation and behavior of the n,(W) are dis-
cussed at length in Sec. VI, and examples are presented
in Sec. VII. The most important result obtained there is
that only a finite number of #,{W) ever leave the unit
circle, so that at most a finite number of quasiparticles
need be introduced to make perturbation theory work
at all energies. (The energy W =0 must be excluded for
long-range forces.) Also, as by-products of our study of
the 4, (W), we are able to offer new proofs of the applica-
bility of the Fredholm theorems to scattering theory
(Sec. III), of the convergence of perturbation theory for
large |W| (Sec. VI), of Levinson’s theorem (Sec. VIII),
of the Bargmann-Schwinger theorem on the number of
bound states (Sec. IX), and of the Pais-Jost theorem on
the identity of the Jost function with the Fredholm
determinant (Sec. XI). We also give an upper bound on
the binding energy of any state bound by any short-
range potential. (Sec. IX.)

In order to show that perturbation theory can really
be made to work, we have derived in Sec. X general
formulas for the phase shifts and lowest bound states
given in potential theory by using first-order perturba-
tion theory after insertion of a single crude quasiparticle.
The scattering length and binding energy have then
been evaluated for the S-wave Yukawa case, with grati-
fying results. More extensive nonrelativistic calculations
are now under way.

The interested reader with little taste for details is
advised to read Sec. II, skim IIT and IV, read V, and
skim VI, VII, and X. Section II should make it un-
necessary to refer back to A. Our next paper will use the
quasiparticle method to solve the multibody problem,
and the following one will extend the method to rela-
tivistic particle physics.
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II. QUASIPARTICLES

We begin by reviewing the parts of A which form our
present starting point.

Consider a Hamiltonian H, which is split into an un-
perturbed part Hy and an interaction V. We shall not
be too specific about the system considered, although
some methods used in this paper need revision for more
than two particles. It will be assumed that H, has only
continuum eigenstates, which are characterized by the
energy E>O0, and perhaps also by other variables
(angular momenta, isospins, etc.) labeled by an index n:

Ho|En)=E|En); )
(E'W | Eny=8,u8(E'—E). @)

We treat » as if it were discrete, though nothing is
changed if # also refers to angles, etc. -

All observables in such a theory can be obtained from
an operator I'(W), defined for all complex W by

T(W)=V+T(W)[W—H, 'V

=V+VIW—H J'T(W). (3)
In particular, the .S matrix is
Snrn(B)=8yrn—2mi{En’ | T (E+i€) | En), 4)

where £>0 and e— +0; the bound-state energies are
at the poles of T(W).

If the kernel [W—Ho 7'V of Eq. (3) is sufficiently
small at some energy W, then T'(W) can be expressed as
the Born series:

TW)=V+V[W—H'WV+---. ©)

But no term in this series has any poles in W. Hence, the
series must diverge for W near bound state energies. We
shall see that it also diverges near resonances, and, in a
certain sense, nowhere else.

In order to cure this divergence of the Born series, we
consider instead of (3) a new integral equation

T'(W)=Vi(W)+T2(W)IW—H IV (W), (6)
where V(W) is a “reduced” interaction
ViW)=V—-v|T(W)XTW)|V, O

and |T(W)) and (T'(W)| are any linear combinations of
the continuum states | En). It is shown in A that T(W)
can be expressed in terms of T1(W) by

TW)=T:(W)+N=>(W)T(W)|T(W))

XAWYT W) T(W), (8)

AW)=[1—-J (W), 9)
JW)=N=>(WXT W) | V(W)

XIW—H, 7 Ty(W) [T (W)), (10)

NW)=1—T )| V[T (W)). (11)

The factors N (W) always cancel in practical calculations.
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It was also observed in A that a formula similar to (8)
would arise in a theory in which the actual interaction
were Vi, but in which H, had a discrete “elementary
particle’” eigenstate. The operator T:1(W) corresponds
to the sum of “proper’” graphs excluding one-elemen-
tary-particle exchange (in the s channel); (T'| T corre-
sponds to the complete proper incoming vertex ; A to the
complete unrenormalized elementary particle propa-
gator; and T:|T) to the complete proper outgoing
vertex. Equation (8) has the obvious significance that
any graph either belongs in 7'y, or it arises from one-
elementary-particle exchange. Except for an over-all
normalization factor, formula (9) for the propagator
A(W) is the same as would arise in a theory in which
there actually was an elementary particle (with infinite
bare mass). Hence, we refer to the steps leading to (8)
and (9) as the introduction of a quasiparticle into the
theory.*

The point of introducing the quasiparticle is that the
new potential V; may be sufficiently weak for the con-
vergence of the new Born series

T\(W)= V(W) Vi (W)W —Ho V(W) -+, (12)

which can be used with Egs. (8)—(10) to calculate T'(W).
The bound state pole in T'(W) then must arise in the
propagator A(W). To make (12) converge, it is clear
that we must try to adjust |T') and (T'| so that the
original interaction V is well approximated by the
separable interaction V|T')(T'| V.

It is also shown in A that the Fredholm determinants
corresponding to (3) and (6) are related by

D(W)=Dy(W)A>(W). (13)

The quasiparticle (or “Schmidt”) method, therefore,
separates out just one troublesome factor from the
Fredholm determinant.

III. CONVERGENCE OF THE BORN SERIES

Our task in this paper is to show that the introduction
of quasiparticlesin close correspondence with real bound
states or resonances can always succeed in making the
Born series converge. As our starting point, we shall
prove in this section that the Born series (5) or (12) will
converge if and only if the kernel has no eigenvalue out-
side the unit circle. This is essentially the criterion al-
ready given by Jost and Pais® for the special case of a

4 A similar approach is followed by M. T. Vaughan, R. Aaron,
and R.D. Amado, Phys. Rev. 124, 1258 (1961). A somewhat differ-
ent way of making composite particles seem elementary is being
developed by A. Salam, Nuovo Cimento 25, 224 (196_2)., and to be
published. See also J. C. Howard and B. Jouvet, dbid. 18, 466
(1960), and R. Acharya, ibid. 24, 870 (1962). For other interesting
comments on the relation of bound to clementary particles, see F.
E. Low, ibid. 25, 678 (1962) and E. G. P. Rowe (to be published),
These authors are all primarily concerned with questions of
principle about the meaning of elementarity, rather than with the
point that seems to me to be most vital, that the representation of
composite particles as if they were elementary can make perturba-
tion theory work.

§R. Jost and A. Pais, Phys. Rev. 82, 840 (1951). See also W.
Kohn, Rev. Mod. Phys. 26, 292 (1954).
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local short-range potential; in this section we will
extend this theorem to almost any interesting two-body
interaction.

We define the set of eigenvalues 9, (I¥) and eigenstates
[¢,(W)) by the equation

W—Ho V[ (W)=2.M) |, (W)),  (14)

with the understanding that |¢,(W)) must actually be
in the Hilbert space, i.e., have finite norm. For the time
being, we keep W negative or complex, although W will
later be allowed to approach the positive real axis. We
shall prove that the series (5) for T(W) converges at
energy W if and only if the eigenvalues satisfy

[m(W)]<1, (all»). 15)

The same theorem applies to the reduced interaction
Vi(W). The convergence is “relatively uniform,”’® a
term explained below. Properties of the %, (W), and their
composite-particle interpretation, are discussed in
Sec. VI.

The necessity of condition (15) for any sort of con-
vergence is obvious, because the series (5), when applied
to any eigenstate, gives

T(W) |, (W)= émwwww». (16)

This clearly diverges if |7, (W)|=1.

In order to prove that condition (15) is sufficient as
well as necessary for convergence, we need to use the
Fredholm theorems to study the behavior of the T
operator for interaction AV :

TWN=NVNVIW—H T (W,)), 17)
as a function of the complex coupling parameter A. The
most convenient condition I know which would allow
some form of Fredholm theory to be applied to a given
kernel K is that K be “L%,” i.e., that TrKK' be finite.”
In our case, this condition becomes 7 (W) < w, where

T(W)ETI‘{—*E—V2}
|W—Ho|?
(En|V?| En)

We will show in Appendix A that 7(W) is actually finite®

$E. H. Moore, New Haven Mathematical Colloquium (1910)
(unpublished), pp. 1-150.

7 All results needed for such kernels may be found in standard
works, such as Integral Equations, by F. Smithies (Cambridge
University Press, New York, 1958); see particularly Secs. 2.5, 2.6,
and Chap. VI. Other names sometimes given to such kernels
include “Hilbert-Schmidt kernel,” “Fredholm operator,” etc.

8 Originally I thought 7(I¥) was infinite, and the preprint of this
paper was based instead on the assumption 7o(W) <o, where
72(W) [previously called 7(W)] is defined by Eq. (B1) in Ap-
pendix B. Tam very grateful to Professor N. Kroll for bringing this
mistake to my attention, because considerable simplifications were
thus made possible. It is conceivable that for some V, 7o(W)
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for the full three-dimensional scattering problem with a
local potential V (x) if and only if

/i V()| 2dir<oo. (19)

If we restrict ourselves to a single partial wave, the
trace is finite if and only if

/IV(r)l2r2dr<w; /|V(r)l2dr<°0. (20)

These conditions for validity of the Fredholm theory
may be contrasted with those given by Jost and Pais® for
the three-dimensional case,

/ [V () |rdr<eo; #2V(r) bounded, (21)
0
or by Newton! for partial waves
/[V(r)[rdr<oo; / [V (r)|dr<e. (22)
0

Our conditions are very much weaker. In particular,
(20) holds even for the Coulomb potential, where (22)
certainly does not. More important, condition (18) is
applicable even to a nonlocal interaction ; only the high-
energy behavior of (En|V?|En) is relevant in deciding
whether the Fredholm theorems hold. Presumably the
reason previous authors had to impose such restrictive
conditions, and then still had to go through all the
trouble of reproving the Fredholm theorems, was that
they insisted on taking W real and positive throughout,
whereas we stay off the positive real axis until the end.

[But a cloud on the horizon should keep us from
expecting too much from the Fredholm method; the
trace 7(W) turns out to be infinite as soon as we turn to
three-body processes. I shall show in the next paper of
this series that the Fredholm method does, in fact, break
down in the multiparticle case, and that the quasi-
particle method survives untarnished. ]

Assuming that [W—H, [V is an 1? kernel, we may
now apply standard theorems? to find the properties of
its resolvent, which is just A\ [W—H ' T (W ). In
this way we learn that

might be finite and 7 (W) infinite, because Appendix B shows that
7o(W) <7(W). In this event, all important results could be proven
as in the preprint by performing a nonunitary similarity transfor-
mation of [WW~—H ]V into the kernel K (W) defined by Eq. (78),
by using reference 7 for K (I¥), and then transforming back. I have
just received a preprint by L. Brown, D. 1. Fivel, B. W. Lee, and
R. J. Sawyer, in which precisely this is done in potential theory.
( 9SS7e)e reference 5; see also N. N. Khuri, Phys. Rev. 107, 1148
1957).

10 R. Newton, J. Math. Phys. 1, 319 (1960). The effort expended
by Newton and by Jost and Pais in proving the convergence of the
Fredholm numerator and denominator is made unnecessary by use
of the theorems described in reference 7.
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(i) Each matrix element {En|T(WXM)|E'%') is a
meromorphic function of A, with poles at the “charac-
teristic” values, A=9,7Y(W), the #,(W) being defined
by (14).

(ii) At least for |A|27(W) <1, the matrix elements of
T (W \) are given by the (absolutely) convergent series

(En|T(WA)|E'n')

= 3 NEn| VW — Ho VY| B,

m=1

(23)

(iil) For N, (W), the resolvent is itself an 1.2
kernel, i.e., 6 (W,\) < =, where

a2WaN= dE/ dr’
nn’ Jq 0

X [(En|T(WN)|E)|?/ |[W—E|% (24)
The proof of our theorem is now almost obvious; we
need only recall the classic theorem that a function of
\ analytic within some circle |A] <)y is given in that
circle by its Taylor series expansion. From (i) we see
that the radius of the circle of convergence is just
M= [91(W)|, where n1 (W) is the eigenvalue of greatest
modulus. And from (ii) we see that the Taylor series for
T(W ) is just the Born series (23).

We are also interested in the uniformity of the con-
vergence, so it will pay us to go through this argument
in detail,"! and to actually set an upper bound on matrix
elements of the remainder of the Born series,

R®(WA)=T(W\)— zP: AVA{LW — Ho TV}t (25)

Suppose that |M| <[ (W)|, and let C be a circle
| 2] = p, with radius p chosen so that

N <p< [t (W)].
The matrix elements (Exn|T(W,2)|E'n') are analytic

inside and on C, so Cauchy’s theorem gives

dz

277

)\Pﬂf (En|T(W,2)| E'n’
¢ " (z—N)

={En|R® (W N|En'). (26)

[The term arising from the pole at z=0 can be deter-
mined by inspection of (23) to be the matrix element of

1 We follow the treatmeﬁt of E. J. Whittaker and G. N. Watson,
Modern Analysis (Cambridge University Press, New York, 1950),
4th ed., p. 93.
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the sum in (25).] This has the upper bound
[(En|RP (W) | E'n')|

2
<er / (En| T(W,pe)| E'w') | db
0 27)
P41

P A

ep=——
2m(p—[\])

2

P
which obviously vanishes as P— . So (23) holds
within the circle of convergence [\| < |7, (W) |. Condi-
tion (15) ensures that the actual coupling parameter
A=1 lies within this circle of convergence, so (15) is a
sufficient condition for convergence of any fixed element
of the Born series.

We can now also use (27) to determine the uniformity
properties of the convergence. From (iii) and the
Schwarz inequality, we see that

> dEf 4B | (Bn| R® (W) | Ew) |/ | W—E]
o <M (W,p); (28)

27
M(W,0)= / o (7, 60,
0

In other words, [W—HyP'R® (W ,)\) is itself ep times
an 1?2 kernel independent of P. Such convergence is
called “relatively uniform.””® The most important con-
sequence is that for any pair of wave packets |,) and
|¥s) normalized according to

Wal¥a)= W |¥s)=1,

the matrix element of the remainder R(¥) has an upper
bound

| el LW —H I RE W N [¢3)| S erM (W,p),

which vanishes as P — o, and which is independent of
|¢a) and I¢b>

We must now show that these results can be extended
to scattering problems, where W= E-{e, with E>0and
e— 0. At first we might anticipate trouble here, be-
cause 7(E+ie), o (E+1e, N), and M (E-+i¢, p) all become
infinite for e=0. But this is misleading. We have already
shown that the true radius of convergence at £-+17eis not
7 12(E+4-1ie),but the generally larger value | ni(E+4-1e) |7,
and this approaches a finite limit almost everywhere as
¢ — 0. (The only exception arises at £=0 for long-range
forces; see Sec. VI.) To see that this limit is the radius
of convergence of the limit of T'(E--ie, \), we need only
set W=E-ie in (27) and let e — 0. All arguments go
through as before, provided that fixed matrix elements
of T(E+ie,\) for NS p<|nr'(E+i¢)| approach finite
limits as e — 0. Whether or not this is the case lies out-
side the scope of our work, but on physical grounds we
should expect T(E-ie A) to stay finite as e— 0,

(29)

(30)
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unless. there were an energy eigenstate at E for the
coupling constant A, i.e., unless Ay, (E-+7e)=1 for some
v; and this is impossible, because A< [t|. (Similar
arguments can be used to justify all of the Fredholm
results for e — 0.)

To summarize: Condition (15) is necessary and suffi-
cient for convergence of fixed matrix elements of the
Born series at any fixed W. The convergence is uniform
[in the sense of (29) and (30)] with respect to the state
vectors defining the matrix element. It is uniform in W
in any closed region within which (15) holds and T'(W,\)
exists. Our basic assumption is the existence of (W),
defined by (18).

All these results apply equally to the reduced Born
series (12), if we substitute V(W) everywhere for V.
The trace (W) must be replaced by

T VW)V (W)

)
|W—H,|*

=7(W)—2 Re(T'(W)]| Vz—l—VII‘(W»
| W—H,|?

_ol

1
+{T )| V‘E/——‘;VI TW)XT ()| V2| T (W)).

|W—H,|

If 7(W) exists, then usually so will this; at any rate this
point can always be checked easily by direct calculation.

IV. EFFECT OF THE QUASIPARTICLE

We now know that a divergence of the Born series
occurs when the kernel [WW—H, "'V has an eigenvalue
outside the unit circle, and that it will be cured by the
introduction of a quasiparticle if the resulting reduced
kernel [W—H1V:i(W) does not have any eigenvalues
outside the unit circle. So we are naturally led to study
the spectrum of the eigenvalues x of the reduced
kernel, defined by

(W—Ho7'VA(W) [ 8)=x|®). (32)

We will now show that these eigenvalues x form two
classes:

(A) All roots of the equation

AW, x™)=0, (33)

where
AW N=1+T W) | VLW —Ho IT(W ) |[T(W)). (34)

[If the interaction were AV, the T operator would be
T(W,\), and we shall see that the propagator would be
A(WN).]

(B) All 9,(W) for which

TNV 1w, (w))=0, (35)

or

(T,(W*) | VT (W))=0. (36)

To solve (32), we note that it can be written as an
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inhomogeneous integral equation

x|®)=C(W)LW—H, 'V |T(W))
+[W~H WV |®), (37)
where
C)=— ()| |8).

There are then just three familiar possibilities:

(38)

(A) The eigenvalue x is not one of the ,(W). Then
Eq. (17) shows that (37) has the unique solution,

|@)=CW)[W—H J'"T(Wx)|[TW)). (39
This satisfies Eq. (32) if (38) holds. Substituting (39) in
(38), we see that if C(W) and |®) are not to vanish then
x must satisfy (33).

(B1) The eigenvalue x is equal to some 4,(W), and

C(W)=0. Then (37) shows that |®) must be just

[®)= |, (W)). (40)
This solves the eigenvalues problem if (38) vanishes,
i.e., if (35) holds.

(B2) The eigenvalue x is equal to some 4,(W), but
C(W)#£0. Then it is well known* that (37) has
a solution if and only if the inhomogeneous term
[W—H,J*'V|T'(W)) is orthogonal to the eigenvector of
([W—H,]'V}t with eigenvalue »,*(W), which is just
V|¥,(W*)); hence, (37) has a solution if

0=, (WH|V[W—H 'V |T(W))
=7],(W)<‘I’,,(W*) l 14 I T (W»:
so (36) is sufficient for a solution to exist. That (36) is
necessary follows by taking the matrix element of (37)

with (F,(W*)| V. If C(W)|®,) is some particular solu-
tion of (37), then the general solution is

|@y=CW)[|®0)— 24 au| W,(W))],  (41)

where the sum is restricted to u such that , (W)=, (W).
Equation (38) can always be satisfied by choosing that
ay as solutions of

ZA TV C(W) )= (T W) |V [20)+1

unless all (T'(W)| V| ¥,(W)) vanish, in which case we
are back in case B1. Q.E.D.

We also promised to show that A(W,\) is the propa-
gator for an interaction AV. To see that this is true for
A=1, we note from (8) that

T T W) [T (W)= T W) | T(W)|T(W))
+N2W)ET )| T2(W) [T (W) PAW).

Using (9) and (10) we can eliminate the (T'| 71|T") and
N, and obtain

AW)=14+T W) |VIW—H JTW)|[T(W)).  (42)

If the interaction were AV, and the reduced interaction
were AV, then the propagator could be derived from

2 See, for example, reference 7, p. S0.
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(42) by substituting
V—\V, T(W)— T(W,)),
T X2[T), (T| — AT

This then gives (34).

We could have anticipated our solution of this eigen-
value problem. For the operator T (W ,x™) obviously
has a pole when x is one of the eigenvalues of the reduced
kernel. But then we see from (8) that either the propa-
gator A(W,x™) must then vanish, or T'(W,x™) will also
have the same pole, in which case x would have to be
one of the 5, (W).

Formula (34) for A(W,\) becomes particularly simple
if the vertices happen to be chosen as linear combina-
tions of a set of nondegenerate eigenvectors ¥, ;

T (W))=2, g.(W) | ¥,(W)), (43)
T | =2, g.(W)T,(WH)]. (44)

For then we can use the orthogonality relation
W (W V[ ¥ (W)= 8,k (W), (45)

since (14) and its adjoint [with Eq. (87)] show that

(W) (WH |V 8, (W)
= (W, (W) | V(W —Ho) ™V [¥,(W))
=0 (W)W, (W) | V]2 (W)).

Applying (43)-(45) to (34) we see that

AN =14 3 )

7 1=M(W) (46)

where
G,(W)=g,(W)g,(W)h,(W)
@@ VITW)NEW) |V ¥, (1))
- (@, ()| V]%,(W))
W[V (W)

=1 . @
(@WH| VW)

[A typical function A(W,x) is plotted for real x in
Fig. 1.7 Our previous result may now be stated: The
eigenvalues of the reduced kernel are the roots of
AW ,x1)=0, plus any 4,(W) for which g,(W)or g,(W)
vanishes, or, in other words, for which

G,(W)=0. (48)

Hence, the spectrum of the reduced kernel depends
solely upon the coefficients G,(W). If there are p non-
zero G,(W), then the reduced eigenvalues are all %, (W)
except the p for which G,(W)=£0, plus the p roots of
Eq. (33); hence, no eigenvalues are lost or gained. A
choice (43), (44) of bare vertices is acceptable if all roots
of (33) lie within the unit circle, and if all 5, for which
G,=0 are already inside the unit circle. Two possible
such choices are offered in Secs. V and X1I.
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F1G. 1. The propagator A(W,x™) as a function of x, for some
typical energy W <0. The dashed line corresponds to the “ideal”
choice of Sec. V, and the solid lines correspond to some choice
which is nearly ideal, and which does succeed in rendering the Born
series convergent. The open dots indicate the original eigenvalues
2,(W), while the black dots denote the eigenvalues x, (W) of the
reduced kernel. The original Born series (5) diverged here because
m>1, but the reduced series (12) converges because {x,,] <1 for
all ». The point x =0 is shown as an open dot because it is a point
of accumulation of the #,; for this reason it is too difficult to
represent what happens in the shaded region. We have drawn this
diagram for a typical attractive interaction. A repulsive interaction
would have all %, negative, while an interaction neither purely
attractive nor purely repulsive would have , on both sides of n=0.

Before closing this section we must note that the
actual propagator is

sm)=145 cmy (49)
( )_‘ v ’ l_ﬂu(I/V)

We can see from (49) or (42) that A(W) has poles at the
bound-state energies — B, which are determined by the

condition that for some »
n.(—B)=1. (50)

Together with Eq. (14), this says that |¥,(—B)) satis-
fies the usual Schrédinger equation,

[Hot+V]|¥.(—B))=—B|¥.(—B)).

Tt is also possible in scattering problems for #,(IW) to
pass through the unit circle, in which case it will be
complex, and |¥,(E-ie)) will represent a resonance.
These matters are discussed fully in Secs. VI and VILI.

V. THE CHOICE OF BARE VERTICES

The “ideal” choice of bare vertices is

[T (W) o= [ W1 (W), (1

U N AU AP (52)
with normalization and phase chosen so that

T Virw))=1. (53)

Here ¥, is the eigenvector corresponding to the eigen-
value (W) of greatest modulus. With this choice the
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reduced interaction is
VI (W)@ (W*)| v
(| Ve

VilW)y=vV—

and the coefhcients G, (W) are, therefore, given by (47)
as

v=1
0 »>1.
The introduction of a quasiparticle with such vertices
has the following advantages:

(a) The greatest eigenvalue 5,(W) becomes zero for
the reduced kernel V,(W)[W—H ], other eigenvalues
remaining the same. [ Use (33), (46), and (55).] Hence,
if there originally is just one culpable eigenvalue outside
the unit circle, the introduction of a quasiparticle ac-
cording to (54) cures the divergence of the Born series.
[If the original Born series diverges because several
eigenvalues %,(W) are originally outside the unit circle,
then the divergence can be cured by introducing an
equal number of quasiparticles, with reduced interaction

ViV, (W* :
v =v— ¥ eI miy
izt (B, (W) | V|, (W)

This more general case can be easily handled, but we
shall not discuss it further here.] If the Born series
originally converges, then introducing the quasiparticle
just improves the convergence.

(b) It could justly be remarked that the task of
finding |¥;(W)) is not much easier than the complete
solution of the original Lippmann-Schwinger equation.
But it must be realized that there is no necessity to
construct |T'(W)) and (T(W)| exactly according to
(51)~(53). Assuming 7:(W) to be the only original
eigenvalue outside the unit circle, the divergence of the
Born series will be cured as long as G1(W) is sufficiently
close to unity, and the other G,(W) are sufficiently
small. (Just what “‘sufficiently” means here depends
partly on how far within the unit circle the nonculpable
eigenvalues lie.) Furthermore, there is a direct and
practical procedure for constructing a |I') and (T'| for
which the coefficients G, are arbitrarily close to the
“ideal” values (55). Simply start with any initial trial
|T®) and (T'®], and calculate

(D))o [(W—Ho)™VI¥[TO(W)),  (56)
T e T LV (W—Hoy M. (87)

For then the G,(W) will have the » dependence
G,(W) g2 (W)G,© (W), (58)

and by choosing M large enough we can make |G:(W)]|
arbitrarily large compared with the other |G,(W)].
Also, we should still normalize |T') and (T'| according to
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the prescription (53):

TW)|VIrw))=1. (59)
For then according to (43)-(45) and (59):
2, G(W)=1, (60)

so that Gy (W) will be close to one, and the other G,(W)
much less.

(c) For W real and negative, the V(W) given in
Eq. (54) is Hermitian.® This is necessary if we want the
theory modified by the introduction of the quasiparticle
to appear acceptable by the usual standards of quantum
mechanics. [But, of course, the modified theory is just
a written version of the original one, and hence, auto-
matically acceptable whether or not V,is Hermitian. In
fact, Eq. (54) gives a non-Hermitian V(W) for
W=E+ie.]

(d) The propagator A(W)isgiven by (49) and (55) as

AW)=[1—mW) 1™ (61)

But the 4, (W) are real analytic functions in the cut
W-plane (see Sec. VI) and, hence, so is A(W). Again,
these analyticity and reality properties are necessary
to preserve the appearance of quantum-mechanical
consistency.

(e) If we choose the vertices exactly according to
(51)-(53), then with the aid of (14) and (61) we can
write Eq. (8) for T(W) as

Vw0 W)V 1
(W ()| VT (W)Y 1= (W)

TW)=Ty(W)+ 62)

Continuing in this way we could, if we wished, develop
T (W) as a series of separable terms like that in (62).

The rest of this section is devoted to a proof that (55)
represents the best possible set of G,(W) that we can
have for W <0 if we want to retain the Hermiticity of
Vi(W). Requiring A(W) to be analytic in the cut
W plane then forces us to (55) for all W.

We begin by showing that if V(W) is to be Hermitian
for W <0, then all of the G,(W) must be real, and all of
the G,(W)n, (W) have the same sign. [ The reality of
7.(W) for W<Q is shown in Sec. VI.] If V(W) is
Hermitian we must have

W) =ew)rw)l, (63)
where £(W) is real. It follows then from (47) and (14)

13 R, Blankenbecler has pointed out in a private communication
that if V is approximated by Vg=V|IXT'|V, and if Vg is Her-
mitian and normalized according to (59), then an error of known
sign is made in phase shifts and binding energies. This point is now
being explored by R. Blankenbecler and M. Sugar. It would be
interesting to see whether a similar result holds for our “ideal”
choice of |T'} and (I'|, which does not give an Hermitian Vs in
scattering problems. However, whether or not the error is of known
sign, it may always be reduced as much as we like by using (8) to
(11) with the series (12).

447

that
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G, (W), (W)= £(W) '
( )71 ( ) ( <\I,y(W)|{W—Ho}|‘I'V(W)>

(64)

So since W— His a negative-definite operator for W <0,
the G4, must be real, and all must be of opposite sign
to £(W).

Now, the new eigenvalues x (W) of the reduced kernel
are given by (33) as the zeroes of A(W,x™), where the
propagator A(W ) is given by (46). With all G., real
and of the same sign, this function has the properties:

(A) When x is complex or real so is A, since

Gy (W), (W)
lx—m (W)

All terms in the sum have the same sign, and, hence,
can not cancel.

(B) For real x, A(W,x™) either increases (for £>0)
or decreases (for £<0) monotonically with x, since

d G,(W)n, (W)
AWy )= — 5y
dx Wh=—2 [x—mn(W)]?

All terms in the sum have the same sign. Between
adjacent , with G,#0, A either rises from — o to - «
or drops from + © to — .

From (A) we see that for W <0, all zeroes x (W) of
AW x™) must be real. A typical function A(x™) with
property (B) is shown in Fig. 1 for real x, in the case
where £<0, and where there is just one ;>1 and no
7,<—1. We see that the subtraction in Eq. (54) pulls
all eigenvalues to the left, lowering the culpable eigen-
value ;. (Had we chosen £>0, all eigenvalues would be
pulled to the right, increasing the culpable eigenvalue
71, and worsening the divergence.)

The new eigenvalues x all lie below the corresponding
7’s, but above the next lower . Clearly, the best we can
do is to lower all of the positive eigenvalues down all the
way to the next lower #, and to lower the negative eigen-
values not at all. (The solid lines in Fig. 1 show a choice
which almost accomplishes this, and which does succeed
in making the Born series converge.) In order to ac-
complish this aim exactly, we must succeed in making
each 9, except m1 an eigenvalue X, 1 of the reduced
kernel. This requires that all G, except Gy are zero. In
this case the single remaining eigenvalue X,, of the re-
duced kernel is given by (33) as

X (W) =m(W)[1—G:(W)]. (67)

So we see that (51)-(53) does represent the ideal choice
of bare vertices.

Actually the speed of convergence of the Born series
(12) for T1(W) depends only on the magnitude of the
greatest x. (Thisis just a guess, and certainly not always
true.) Since the choice G:=0 ensures that the next-to-
greatest original eigenvalue 5, is an eigenvalue X; of the

ImA(W,x )= — (Imx)2 (65)

(66)
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reduced kernel, there is nothing particular gained by
arranging that X,, be zero. The reduced Born series will
converge equally well for any Gy such that |X,| <|ns],
or, in other words, for any G such that

=G (W) | £ | 9:(W)/m(W)].

But the choice Gi=1 is particularly convenient, since
we can always use the procedure outlined above under
(b) to get sufficiently close to (53) for the reduced
Born series to converge.

(68)

VI. EIGENVALUES OF THE KERNEL: BEHAVIOR
AND INTERPRETATION

We have seen that any discussion of the convergence
of the Born series must center upon the eigenvalues
7, (W) and the eigenvectors |¥,(W)) of the kernel
[W—Hy V. For the Born series diverges whenever
some eigenvalue #,(W) lies outside the unit circle, and
the divergence can be cured by introducing a quasi-
particle with bare vertices not too different from the
‘“ideal” choice (51)-(53), and hence, approximating the
eigenvector ¥, (W),

In order to facilitate the diagnosis and cure of the
divergence of the Born series, we shall, therefore, first
discuss the physical interpretation of the %, (W) and
W,(W), and then treat some of their general properties.
A few particular examples are given in the next section.

The eigenvalue problem is

(W—H V&) =0.(W)|¥.(07)).  (19)

Here W can be anywhere in the complex plane, except
on the positive real axis. [In scattering problems we
deal with W= E+ie, with 0<e<E. See, e.g., Eq. (4).]
This can be rewritten as a modified Schroedinger
equation,

[Hotn, (VI W))=W |¥,(7)).

It is understood that |¥,(W)) must be normalizable;
7,(W) is determined by the condition that such a solu-
tion exist. Of course, if the ‘“‘interaction” #,7'V is
Hermitian then such “bound states” can only exist for
real W<O0; hence, all %,(W) must be complex for W
complex. [In particular, 4,(W) is always complex in
scattering problems; |¥,(E-ie)) is normalizable for
finite ¢, but not for e=0.]

Equation (69) allows us to describe n, (W) as a number
by which the interaction V' may be divided in order to
have a bound state at energy W. We, therefore, conclude
that the Born series (5) at energy W will converge if and
only if there exists no bound state at W, not only for the
actual interaction V but also for any weaker interaction
of form V /5, with |n| = 1. If V is a repulsive interaction,
or if W is complex or positive, then there can be no
actual bound state at energy W, but the Born series may
still diverge because of some bound state that would be
at W if the interaction were V/9, with || = 1.

When 5, (W)=1 for some W <0, then there is a bound

(69)
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state with binding energy — W for the actual interaction
V. When

Ren, (E+i=1, Imn,(Egtiekl,  (70)

for some E,>0, then there is an energy eigenstate
with energy -+ FE, for a non-Hermitian interaction
V /n(E+1€) which is almost the actual interaction. In
this case the propagator A(Eq+ie) given by Eq. (42) or
(49) (and, hence, also the S matrix), becomes very large
at energy Fo. We call this a resonance or a virtual state,
depending on whether Ren(E+-ie) passes one as E
passes E,, or just approaches it and then recedes. We
shortly see that in potential problems, the wave func-
tions ¢, contain only outgoing waves, agreeing with the
intuitive idea of a resonance as a decaying particle. The
behavior of the phase shift is discussed later.

A special case of particular interest is that of a spinless
nonrelativistic particle of mass m moving with orbital
angular momentum / in a local central short-range
potential V(7). In this case (69) becomes

1 @ 10+1) V)
[t
2mdrr 2mrt (W)
=W (r; W), (71)
and the condition that |¥,) be normalizable yields
(7 W)~ri) 7 — 0, (72)
~ethr, y— oo, (73)
where £ is determined by
W=k/2m; Imk>0. (74)

(We omit the index I everywhere.) “Short range” is
taken to mean that for some a>0

/ |\ V() |elodr< . (75)
0

The ‘“range’ is the greatest lower bound of ¢ satis-
fying (75).

For W <0 we get k=1ix with x>0, and so¢,(r; W) has
the correct behavior as r — < for a bound state wave
function. For W= E-+ie with E>0, £ becomes real and
positive, and so ¥, (r,k) is a wave function with outgoing
waves only. Of course such solutions never exist for
Hermitian potentials, but they can and do exist for the
complex potentials V (#)/9,(W).

The wave function ¥(r,k) for a potential AV (r) is
given by

lﬁ(f',k,)\) < f<_k; )\)f(?’,k,)\)'—f(kJ\)f(f, _k; >‘)7 (76)

where f(k,\) is the usual Jost function, and f(r,k,\) is
that solution of Schrédinger’s equation which ap-
proaches exp(—iks) as r— . Hence, we see that the
eigenvalues 5,(W) for potential AV may be defined as

1 For general /, sce R. Newton (reference 10).
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the roots of the equation

f(=k, Nm)=0. (77)

This will be useful when we come to discuss the behavior
of the n,(W) in potential theories.

We shall now describe the properties of 4, (W) for a
general interaction V. No attempt will be made at
extreme rigor, but our conclusions are plausible, and
are borne out by the examples presented in the next
section.

We begin by recalling from Sec. III that for W not
real and positive, the #,71(W) are the poles of a mero-
morphic function, the resolvent T'(W,\). It follows
immediately that for such W:

(A) The n,(W) form a discrete set.

(B) At most a finite number N (W) of eigenvalues
7,(W) lie outside the unit circle. For if an infinite number
of the n,(W) had |, (W)|>1, then the 5, (W) would
have to have a limit point at some finite N\ within the
unit circle; this is impossible for the poles of a mero-
morphic function. [Both (A) and (B) follow also from
the fact that the »,~ (W) are zeroes of an integral func-
tion, the modified Fredholm determinant. ]

Result (B) is vital to our program, since it shows that
the introduction of a finite number (W) of fictitious
elementary particles can always cure the divergence of
the Born series at a fixed W. [However, we see in Sec.
VII that 9T (W) can only be expected to be a bounded
function of W for short-range forces. ] Alternate proofs
of (B) will be given as we go along.

We shall next study the %,(W) for negative real W;
the results obtained will then be extended to all W by
analytic continuation. The #,(W) are the eigenvalues
of an operator K(W):

K()= = (Ho= W)=V (= W),
which for W <0 is Hermitian. It follows that

(C) The 9,(W) for W <0 are all real. Also, since the
trace of K(W)KT(W) is finite (see Appendix B), we
have

(D) Then 5, (W) for W <0 obey the sum rules

(78)

2o NW)=ry(W), (N=2,3,--+), (79)
where 7y (W) is finite, and given by
rn(W)=Tr{K¥ (W)},
or using (78)
(W) =Tr{[(W—Ho)*V]¥}. (80)
This shows that as y —
i, (W) — 0, (81)

which provides an independent proof of (B). We shall
now prove the more surprising property,
(E) Each 4, (W) for W<0 is either positive and in-
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creasing or negative and decreasing over the whole
range from W= — « to W=0. These two cases will be
called “attractive’ and “repulsive” eigenvalues, respec-
tively, for reasons which will be made clear under (F).
To see that these two possibilities are, in fact, exhaus-
tive, we note that for W <0, (69) gives

LHo—W)g,(W)+V]|¥,(W))=0,

and
(W) |[(Ho—W)n,(W)+V]=0,
so that p
0=ﬁ<\1/,(W> IL(Ho—W)n,(W)+ V]| ¥, (W))
— ()] [i(Ho— W)ny(W)}l‘va(W)%
aw
Hence,

dn, (W S|y,
Lann)_ wmiemy

(W) AW (B, (W)| (Hoe— W) | %, (7))

But H,—W is a positive-definite operator for W <0,
and so
dn, (W)

(W) dW

1 1
> (83)
W
If 47, (W) is positive at any point W1 <0, then (83) tells
us that it will increase for all W>W,, and of course,
therefore, stay positive. Letting W, — — oo, we get (E).
We have already noted that bound states occur when
one of the 4, becomes unity. [See Eq. (50).] So (E) tells
us that only the attractive eigenvalues yield bound
states, and then only when

7(0)=1. (84)

There is just one bound state for each eigenvalue 7, (W)
satisfying (84). The fact that such eigenvalues increase
with W just corresponds to the fact that any bound state
is always deepened by strengthening the interaction.

A general interaction V will have both repulsive and
attractive eigenvalues. But things are simpler in special
cases.

(F) A purely attractive or repulsive interaction ¥ has
only attractive or repulsive eigenvalues. For (14) gives

_ @, V(W—Ho) 'V |¥,(W))
&NV &)

, (89)

WV(W

and so for W <0 the sign of 9, (W) is always the same as
that of
— (&) [V]w,(W)). (86)

The fact that all eigenvalues are repulsive for a repulsive
interaction tells us the obvious fact that no repulsive
interaction can ever yield a bound state.

We shall now leave the real axis and treat the 5,(W)
for complex W.
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(G) Each 5,(W) is analytic in the complex W plane,
cut along the real axis from W=0 to W= . This is
apparent upon inspection of Eq. (14). The only excep-
tion expected would arise if several 5, (W) became equal
at some W ; we assume this doesn’t happen.

By analytic continuation of (C) and (D), we see that

(H) The (W) satisfy

(W) =, (W¥). (87)
Equation (88) follows from (C), (G), and the Schwarz
reflection principle. It can also be derived using time

reversal rather than analyticity arguments. If we apply
the anti-unitary time reversal operator 4 to (14), we get

(W*—H Vol w,(W))y=n*(W)o[¥.(W)). (88)
This yields (87), and also
0| W, (W))=|¥,(W*). (89)

(I) The n,(W) obey the sum rule (79) for complex W
as well as for W <0.

(J) An attractive (repulsive) eigenvalue 7, (W) has
positive-definite (negative-definite) imaginary part in
the upper half of the complex W plane. For we have
already remarked that Imn, (W) never vanishes for
complex W, since when #,(W) is real the operator
Ho+4,1(W)V is Hermitian, and hence, can only have
real eigenvalues W. So the imaginary part of #,(W)
stays positive-definite or negative-definite throughout
the region ImW >0. But at a point W=W 446 (where
Wy<0 and 0<3<K|W,|) we have

o, (Woi8) =, (Wo)+idn, (Wo).

The derivative 5,” (W) is positive definite (or negative
definite) for an attractive (or repulsive) eigenvalue, so
7,(W) has positive-definite (or negative-definite) imagi-
nary part at Woe+46, and, hence, everywhere in the
upper half W plane.

(K) The #,(W) vanish in the limit |W|— o, and
have the spectral representation

* n(E)
n (W)= / E”_WdE. (90)
—2mk *
nm)=— |[ v

and the result (92) follows upon use of (72) and (75).
It follows from (90) and (92) that for small £

o (E+ie)—n,(0)= B,E+inC,EH, (95)

where B, and C, are real. So (95) tells us that this
difference is essentially pure imaginary and grows as
\/E for S-wave scattering, while for higher partial
waves it grows as F and is essentially pure real. (See
Figs. 4 and 5.)

(N) The sum rule (79) holds for all W even with
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Here p,(E) is real, and positive (negative) when 7, is an
attractive (repulsive) eigenvalue. The vanishing of
7,(W) as W — — oo follows from (I);if 7o(W) exists at
all it clearly must vanish as W — — «. The spectral
representation follows then rigorously by use of (G), (J),
and the Herglotz theorem.® One consequence of the
vanishing of #, (- -7e) is that the Born series always
must converge at sufficiently high energy.!¢

Nothing else can be said about the individual 5, (W)
without putting further restrictions on the interaction
V. This is demonstrated clearly by the first example
presented in the next section, which shows that for any
given 71 (W) having the above properties, an interaction
V may be constructed which yields 7, (W) as one of the
eigenvalues.

But in the problem of scattering by a short-range
potential [as specified by (71)~(75)]it is possible to say
considerably more about the #,(W).

(1) The function 5, (W) has only one singularity in
the complex W plane, a branch point of the /W variety
at W=0. For it is obvious from (77) that the singu-
larities of the 7, when written as a function of
k= (2mW)'? must be the same as those of the Jost func-
tion f(—#k,\). Hence, 7,(k) may be extended from
Imk>0 (the physical W sheet) to the larger region

Imk> —1/(2a), 91)

and so 9,(W) is analytic in /W on the physical sheet.
(We will see in the next section that the same result
holds for the Coulomb potential, except that a pole W1
is superimposed on the branch singularity 4/.)

(M) For E— 0 the spectral function of %,(W) has
the behavior

p,(E) — C,E!. (92)

This can be seen by noting from (90) and (85) that

wp, (E)=Imy, (E+ie€)
(E| VI, (E+ie))|?

- — ()
(U, (E+ie)| V| T, (E+ie)
In potential theory this becomes
2 ]
R)rdr / / V) (s )| w], (94)
0

N=1;in this case it says that

S (W)= ~2imk/ 72V () 71 (kr)hy @ (kr)dr.  (96)
- 0

15§, A, Shohat and J. D. Tamarkin, T/e Problem of Momenis
(American Mathematical Society, 1943), p. 23. Without using (I),
the Herglotz theorem alone would show that »,(W)=0(W) for
W — .

16 C. Zemach and A. Klein, Nuovo Cimento 10, 1078 (1958);
A. Klein and C. Zemach, Ann. Phys. (N. Y.) 7, 440 (1959); W.
Kohn, reference 3.



